A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires
نویسندگان
چکیده
Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.
منابع مشابه
Determining the Spatial Location of Lookout Towers in Rapid Forest Fire Detection Using Geographic Information System (GIS)
Degradation of forests by fire has several environmental and socio-economic impacts and causes a disruption in the balance of ecosystems. Thus, rapid identification of fire using fires detection towers is necessary to reduce destructive effects in forests. Therefore, the purpose of this study is the identification of best and optimal locations to install fire detection towers using Digital Elev...
متن کاملChapter 9: Landscape Fire Simulation and Fuel Treatment Optimization
Fuel treatment effects on the growth and behavior of large wildland fires depend on the spatial arrangements of individual treatment units. Evidence of this is found in burn patterns of wildland fires. During planning stages, fire simulation is most often used to anticipate effects of fuel treatment units. Theoretical modeling shows that random patterns are inefficient in changing large-fire gr...
متن کاملتجزیه و تحلیل آتشسوزی جنگل با منشأ آبوهوایی با دادههای ماهوارهای در منطقهی البرز
Forest fire is one of the important problems in Iran which is caused by different factors such as human and natural factors. One of these factors is climate conditions that can be created by heat wave and special circulation of atmospheric phenomena. Occurrence of forest fire in north of Iran have different impacts on environment such as destruction of natural. According to the position of Iran...
متن کاملSimulating Fire Spread with Landscape Management Scenarios
Collectively, landscape structure, fuel loading, and weather control wildland fires. Our objective was to examine the impacts of landscape structure, weather and fire-ignition location on fire spread using FARSITE. We simulated surface fires in the Chequamegon National Forest, Wisconsin, on five landscapes: a control and four harvested landscapes created using HARVEST by varying the amount (2% ...
متن کاملPredicting and preparing a risk map of rangeland fires using random forest algorithms and support vector machine (Case study: Arak rangelands)
Abstract Background and objectives: Rangeland fires have devastating effects on the landscape, performance and services of rangeland ecosystems. Despite the efforts of experts, decision makers, stakeholders and government agencies in recent decades to reduce the effects of fire, its number and related economic and human losses are increasing worldwide. One of the most important measures to r...
متن کامل